• 2019 GAPNA Pharmacology Conference: Contemporary Pharmacology and Prescribing in Older AdultsJoin us at the 2019 GAPNA Pharmacology Conference:
    Contemporary Pharmacology and Prescribing in Older Adults

    March 28-30, 2019, Chicago Hilton, Chicago, IL.

    Earn up to 11.5 CNE hours.

     

    Find out more about it and REGISTER today!

  • Poster PresentationCALL FOR: Podium and Poster Abstracts

    For the 37th GAPNA Annual Conference
    at the Paris Hotel
    Las Vegas, Oct. 2-5, 2019

    GAPNA members are invited to submit an abstract about their innovative work, that should enrich the APRN's knowledge and/or enhance the care of an older adult.

    Submit by March 15, 2019!

  • W A N T E D   G A P N A   L E A D E R S!
    Call for Nominations!

    Have you ever considered stepping forward, accepting the challenge and volunteering for a position on the 2019 National Board of Directors? Register online NOW by April 1, 2019!

    Step Up - NOW is the Time! Register Here>

  • Gerontology Resources for APRNs in Acute and Emergent Care Settings ToolkitCareer Center

     
    NEW! The goal of the Gerontology Resources for APRNs in Acute and Emergent Care Settings (“Acute Care Resource Guide”) is to make geriatric and gerontological content easily accessible to those caring for older adults in higher acuity care settings.

    Learn more about the toolkit

  • FREE continuing education credit is available for the following session:

    "Diastolic Heart Failure Management"

    (session captured at the GAPNA 2017 Annual Conference)


    For Jan/Feb 2019 - Get Your Free CNE Now!

  • Poster PresentationONLINE NOW:

    2018 GAPNA Conference Poster Presentations

    Note the latest trends in the care, education, and research of the older adult population.

     

    View the 2018 Poster Presentations from the Annual Conference!

RNA Splicing

Abnormal RNA Splicing in the Aging Brain May Play a Role in Alzheimer’s Disease

Scientists have long sought to describe and explain the complex molecular events in the brain that cause Alzheimer’s disease and the mechanisms by which genetic risk factors exert their effect.

A new National Institute on Aging (NIA)-funded study finds that changes in a process called RNA splicing interact with specific Alzheimer’s genes and may contribute to functional deficits in the Alzheimer’s brain. The study, published in the November 2018 issue of Nature Genetics, provides new insights into the molecular process behind the disease.

RNA, or ribonucleic acid, is a molecule that carries instructions from DNA for creating proteins in the body. Before RNA messages are translated into proteins, certain segments must be edited out, a process known as RNA splicing. Each particular RNA can give rise to many possible outcomes, known as “alternative splicing,” a normal occurrence in the brain and other organs.

A team led by researchers from the Icahn School of Medicine at Mount Sinai and Columbia University, New York, studied brain tissue from more than 450 deceased older people in two NIH-funded studies – the Religious Orders Study and the Memory and Aging Project – to create a genome-wide map of splicing variations in the aging prefrontal cortex. The prefrontal cortex is the part of the brain involved in executive functions, such as planning and setting goals.

Analysis of the RNA sequence data, made available through the NIA-supported AMP-AD Knowledge Portal, showed that Alzheimer’s brains contained many more alternatively spliced RNA messages than non-Alzheimer’s brains. Those altered splicing events corresponded to 84 genes, including a number of newly discovered risk-factor genes for Alzheimer’s disease.

For variants of three known Alzheimer’s genes – CLU, PICALM, and PTK2B – the findings may help explain how they exert their effects in the brain. The study also examined how newly identified genes associated with Alzheimer’s connect to known risk genes. It found that many are part of molecular networks associated with the breakdown and clearance of both normal and toxic proteins.

The findings suggest that altered mRNA splicing in the brain is a feature of Alzheimer's disease that is, in some instances, genetically driven.

For more info, see Raj, T. et al. (2018). Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nature Genetics, 50(11), 1584-1592.

Related Topic 1: 

GAPNA Newsletter Issue: 

VIEW ALL ARTICLES: